NASA TECHNICAL MEMORANDUM

NASA TM X-1136

SA TM X-113

(NASA-TM-X-1136) COMPARISON OF MEASURED N72-73793
AND CALCULATED TURBULENT HEAT TRANSFER IN A
UNIFORM AND NONUNIFORM FLOW FIELD ON THE
X-15 UPPER VERTICAL FIN AT MACH NUMBERS OF Unclas
4.2 AND R.P. Banas (NASA) Sep. 1965 36 p 60/99 33848

(ACCESSION NUMBER) (ACCESSION NUMBER) (PAGES) (CODE) (CODE) (CATEGORY)	
---	--

COMPARISON OF MEASURED AND CALCULATED TURBULENT HEAT TRANSFER IN A UNIFORM AND NONUNIFORM FLOW FIELD ON THE X-15 UPPER VERTICAL FIN AT MACH NUMBERS OF 4.2 AND 5.3

by Ronald P. Banas

Flight Research Center Edwards, Calif. DIASSIFICATION CHARGED

CAUCH ACCOUNTS TO THE TIME TO

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • SEPTEMBER 1965

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

4

COMPARISON OF

MEASURED AND CALCULATED TURBULENT HEAT TRANSFER IN

A UNIFORM AND NONUNIFORM FLOW FIELD ON

THE X-15 UPPER VERTICAL FIN AT

MACH NUMBERS OF 4.2 AND 5.3

By Ronald P. Banas

Flight Research Center Edwards, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

COMPARISON OF MEASURED AND CALCULATED TURBULENT HEAT TRANSFER

IN A UNIFORM AND NONUNIFORM FLOW FIELD ON THE X-15

UPPER VERTICAL FIN AT MACH NUMBERS OF 4.2 AND 5.3*

By Ronald P. Banas Flight Research Center

SUMMARY

19130

Turbulent heat-transfer coefficients and measured local static pressures were obtained in flight on the X-15 upper vertical fin with both a sharp and a blunt leading edge. The data are compared with calculated values. Calculated and measured Mach number profiles in the shear layer are also presented.

Heat-transfer coefficients were obtained from measured skin temperatures at free-stream Mach numbers of approximately 4.2 and 5.3 and free-stream Reynolds numbers between 1.8×10^6 and 2.5×10^6 per foot. Comparisons of measured and calculated heat-transfer coefficients obtained in both a uniform flow field and a nonuniform flow field show that the heat-transfer coefficients calculated by Eckert's reference-temperature method were from 32 percent to 57 percent higher than the measured values.

INTRODUCTION

The X-15 flight-research program has included many flights to investigate the effects of aerodynamic heating and to determine the adequacy of the heat-transfer methods used in the design of the X-15.

Early heat-transfer results on the X-15 at Mach numbers of 3, 4, and 5 and at low angles of attack (ref. 1) indicated that the reference-temperature method of Eckert (ref. 2) for turbulent flow overestimated the measured heat-transfer coefficients by as much as 60 percent. Reference 1 also showed that closer agreement was obtained when the effect of heating rate on the reference temperature was neglected (the adiabatic-wall reference-temperature method). Reference 3 compared the methods of Van Driest (ref. 4), Eckert (ref. 2), and reference 1 in temperature time-history form to X-15 data at Mach numbers of 4, 5, and 6. The study concluded that the method of Eckert, with the effect of heating rate neglected, estimated the measured temperatures at various locations on the X-15 with sufficient accuracy for flight-safety purposes. The close agreement between measured and calculated heat transfer (ref. 1) and skin temperature (ref. 3) was obtained by assuming attached-shock (uniform) flow conditions and neglecting the effect of heating rate.

Since the measured data were obtained in the presence of a shear (entropy) layer 1 that extends well past the boundary-layer edge, Quinn and Kuhl in a subsequent paper (ref. 6) used calculated shear layers to determine flow conditions at the outer edge of the boundary layer in their analysis of the measured heat-transfer data. They concluded that, with the shear layer taken into account, the theories of Van Driest and Eckert still overestimated the heat transfer on the fuselage by 35 percent to 60 percent and on the wing by 30 percent to 45 percent.

In order to minimize the uncertainties in the analysis of the measured heat-transfer data associated with the bluntness-induced flow conditions, the upper fin of the X-15 was modified to incorporate a sharp-leading-edge configuration. Data were obtained on both the original blunt-leading-edge fin and the modified sharp-leading-edge fin. This paper discusses the flow conditions and presents measurements of heat transfer in a uniform flow field (attached shock) and in a nonuniform flow field (detached shock) at the instrumented chord of the upper fin. In addition, heat-transfer data from the wing and fuselage of the X-15 are included for comparison with the fin data. The measured heat-transfer data are compared with the method of Eckert, and the flow-field data are compared with the method of Moeckel.

SYMBOLS

A flow field with a Mach number gradient, normal to the flow direction, produced by the normal and highly curved portion of the detached shock wave associated with a blunt leading edge (ref. 5).

Re Reynolds number,
$$\frac{\rho Vx}{u}$$

St Stanton number,
$$\frac{h}{\rho_l V_l c_{p,l}}$$

$$T_W$$
 skin temperature, °R

$$Z = A \frac{dT_W}{dt} + \sigma \epsilon T_W^{1/4}$$

$$\alpha$$
 angle of attack, deg

$$\beta$$
 angle of sideslip, deg

$$\Delta$$
 error (appendix only)

$$\rho$$
 density of air, lb/ft^3

$$\rho_{\rm W}$$
 density of skin material (for Inconel X, 515 lb/ft³)

Stefan-Boltzmann constant,
$$4.78 \times 10^{-13}$$
 Btu ft²-sec- $^{\circ}R^{4}$, and standard deviation (appendix only)

Subscripts:

TEST SURFACE

The general test area of this investigation is shown on the three-view drawing of the X-15 in figure 1.

To generate a uniform flow field, the leading edge of the movable upper vertical fin of the X-15 was changed from a blunt, 1.0-inch-diameter, 5° half-angle wedge to a sharp, 0.030-inch-diameter, 5° half-angle wedge. The new leading edge, machined from type 347 stainless steel, increased the chord length 5 inches. Figure 2 shows the fixed and movable portions of the fin, detailed section views of the sharp and the blunt leading-edge configurations, and pertinent dimensions.

To insure turbulent flow along the fin, boundary-layer trips consisting of spot welds 0.125 inch in diameter and 0.020 inch to 0.025 inch high were placed along the right side of the fin 5 inches from the leading edge (fig. 2). Figure 3 shows a closeup view of the sharp leading edge and a boundary-layer trip. Additional information on the vertical fin and other physical characteristics of the X-15 is included in reference 3.

INSTRUMENTATION

A shear-layer rake was mounted on the left side of the sharp fin 27 inches from the leading edge and 12 inches from the top of the fin. Figure 4(a) shows the shear-layer rake in the location at which the uniform flow-field data were obtained. Figure 4(b) shows the shear-layer rake fastened to the blunt fin at the 93-percent-chord position, the location at which the nonuniform data were obtained.

The locations of surface thermocouples and static-pressure orifices on the upper vertical fin are shown in figure 2. The thermocouples were fastened to both the right and the left sides of the vertical fin; whereas, the static-pressure orifices were placed on the right side only. The skin thickness at the thermocouple locations, flow distance from the leading edge, and percent chord corresponding to the flow distance are presented in table I for both the blunt and the sharp fin. Other pertinent dimensions for the blunt fin are listed in table II.

The thermocouples were 30-gage chromel-alumel wires spot-welded to the inside surface of the skin. The static-pressure orifices were 0.250-inch inner-diameter tubing installed flush with the outside surface of the skin. The entire shear-layer rake was constructed of Inconel X. The surface orifices and impact probes were connected by tubing to standard NACA self-recording mechanical-optical manometers in the side fairing of the fuselage.

The lag in the static-pressure system was determined from the data of reference 8 to be negligible for the flight conditions at which the heat-transfer coefficients were obtained, and the static-pressure measurements are

accurate to $\pm 10~\text{lb/ft}^2$ (ref. 9). Since the impact pressure is much greater than the static pressure, the lag in the impact-pressure system was assumed to be negligible. The resulting error in local Mach number arising from combining the impact- and static-pressure errors is ± 0.1 .

The overall accuracy of the thermocouple system is $\pm 15\,^{\circ}$ F. By using the measured skin temperature and assuming a limit error of $\pm 15\,^{\circ}$ F, the resulting probable error in heating rate is ± 0.844 deg/sec. The errors in the heat-transfer coefficients, as derived from measured data, are analyzed in the appendix.

TEST CONDITIONS

Heat-transfer coefficients were derived from measured skin temperatures during quasi-steady periods of four X-15 flights--two with the sharp-leading-edge vertical fin (3-23 and 3-31)¹, and two with the blunt leading edge (2-22 and 2-29). A typical flight time history (3-23) is shown in figure 5. The shaded area typifies the quasi-steady periods in which velocity, altitude, angle of attack, and angle of sideslip were changing slowly in comparison with the other portions of the flight. The free-stream Mach number, static pressure, static temperature, angle of attack, angle of sideslip, upper-fin deflection, and measured skin temperature for the quasi-steady periods of each flight are listed in tables III and IV, and the measured surface pressures for the various chord positions are listed in tables V and VI. Heat-transfer coefficients were derived at the following conditions:

	Sharp lea	ding edge	Blunt lea	ding edge
Flight	3 - 23	3-31	2 - 22	2 - 29
t, sec	80	87	90	116
$ m M_{ m \infty}$	4.28	5.31	5.27	4.19
Re _∞ per foot	2.42 x 10 ⁶	1.86 x 10 ⁶	2.40 x 10 ⁶	2.45 x 10 ⁶

DATA REDUCTION

The following equation for thin-skin heat balance was used to derive the heat-transfer coefficients from the measured skin temperatures

$$h = \frac{\rho_{W}c_{P,W}b_{W} \frac{dT_{W}}{dt} + \sigma \epsilon T_{W}^{l_{+}}}{(T_{r} - T_{W})}$$
 (1)

¹In the flight-designation system used for the X-15, the first digit is the airplane number; the following digits indicate the free-flight number.

The skin temperatures T_w were recorded at 1-second intervals. To determine the heating rates $\frac{dT_w}{dt}$, nine data points were fitted with a second-order curve. The derivative at the midpoint was used to determine the heat-transfer coefficient. The turbulent recovery temperature T_r was calculated by using a recovery factor equal to the cube root of the Prandtl number evaluated at the reference temperature. The values of the recovery factor ranged from 0.90 to 0.91.

RESULTS AND DISCUSSION

Shear-Layer Measurements

The effects of the blunt and the sharp leading edges on the local-flow conditions were determined from shear-layer-rake measurements on the fin surface (fig. 4) during flights similar to those from which data were obtained for this investigation. Local Mach numbers were derived from the Rayleigh pitot-tube formula (ref. 10) by using measured pressures from the shear-layer-rake impact probes and surface orifices. The usual assumption of constant static pressure through the boundary layer was extended to the farthest impact-pressure probe (4.5 inches). The measured Mach number profiles for both the blunt and the sharp leading edges are shown in figures 6 and 7, respectively, for free-stream Mach numbers corresponding to those for which heat-transfer data are presented. The measured Mach number profiles are compared to those calculated for inviscid flow by the method of Moeckel (ref. 11), wherein the shock-wave shape computed by the method of Love (ref. 12) was used. This procedure is described in reference 6.

Blunt leading edge.— Calculated and measured Mach number profiles normal to the surface of the blunt-leading-edge fin are presented for $M_{\infty} = 4.2$ in figure 6(a) and for $M_{\infty} = 5.1$ in figure 6(b). The data show good agreement. The repeatability in the measurements can be seen in figure 6(b), in which data from two flights are presented.

About 1 inch above the surface, the measured local Mach numbers deviate from those based on inviscid-flow calculations. This deviation is caused by the presence of the boundary layer. Unpublished data from a boundary-layer rake at the 70-percent chord and the same span position as the shear-layer rake agreed well with boundary-layer thicknesses calculated by the method of references 13 and 14. At the shear-layer rake, the edge of the boundary layer was calculated to be 1 inch from the surface, as shown in the figure. If the Mach number at the outer edge of the boundary layer is assumed to be that given by the Moeckel-Love method 1 inch above the surface, the Mach number is less than 8.5 percent above the value calculated at the surface. This condition is seen by comparing the difference between the calculated local Mach numbers at y = 0 and y = 1 inch. Since the shear-layer profile is a function of the shock shape and, therefore, remains unchanged with flow

distance for a constant pressure ratio $\frac{p_{l}}{p_{\infty}}$, the difference between the Mach number at the outer edge of the boundary layer and at the fin surface becomes even less as the boundary-layer height diminishes forward of the rake position. The effect of this small difference is insignificant in the calculation of the heat-transfer coefficients; therefore, the calculated inviscid surface values were used. The surface Mach number is easily calculated by using a swept-normal-shock procedure. l

Sharp leading edge.— Calculated and measured Mach number profiles are presented for $M_{\infty}=4.2$ in figure 7(a) and for $M_{\infty}=5.1$ in figure 7(b), the same free-stream Mach numbers as those at which the blunt-leading-edge data were obtained. Good agreement between the measured and the calculated data is shown. Again, data from two flights are presented, indicating good repeatability.

The calculations show that the local Mach number increases rapidly from the swept-normal-shock values 1 at the surface to the oblique-shock values near y=0.35 inch. The Mach numbers measured at y=0.5 inch indicate that the innermost probe is at or within the boundary-layer edge. This observation is supported by estimated boundary-layer heights of about 0.5 inch at this location. When these data are compared with those of figure 6, it may be seen that the shear layer produced by the installation of the sharp leading edge is reduced to the extent that the growth of the boundary layer takes place in essentially uniform flow. Accordingly, the boundary-layer-edge Mach numbers for the analysis of the sharp-fin heat-transfer data were calculated by using oblique-shock assumptions (ref. 15).

If the measured Mach numbers (above 0.5 inch) and the wedge half-angle are used with the Prandtl equation for an oblique shock (ref. 16, page 86), the resulting Mach number upstream of the vertical fin is within ±0.1 of the free-stream value. Hence, even in the highly complex flow field approaching the upper vertical fin of the X-15, the simple oblique-shock method adequately predicts the local conditions at the edge of the boundary layer.

Surface Pressures

Measured surface pressures on both fins are shown in figure 8 for the time in each flight at which heat-transfer coefficients are presented. The measured data are compared to calculated oblique-shock values at $\rm\,M_{\infty}=4.2$

¹As applied in reference 6, a swept-normal-shock total pressure is computed by taking the component of the free-stream Mach number normal to the leading edge, and using this Mach number to obtain the total-pressure ratio across the shock wave from the normal-shock tables of reference 15. This total-pressure ratio is multiplied by the free-stream total pressure to obtain a swept-normal-shock total pressure behind the shock wave. The latter pressure is used with the measured static pressure to obtain the local Mach number that would exist at the surface in the absence of a boundary layer.

(fig. 8(a)) and $M_{\infty} = 5.3$ (fig. 8(b)). Except for the lower pressures measured at x = 5 feet and x = 6.3 feet on the sharp fin, the calculated values are in good agreement with the measurements. Accordingly, the oblique-shock assumption was considered adequate for calculating values of local static pressure at the boundary-layer edge. The lower pressures measured at x = 5 feet and x = 6.3 feet on the sharp fin are, as yet, unexplained; however, it may be noted that the effect is not discernible in the measured heat-transfer data of figure 9.

Other boundary-layer-edge conditions (density, velocity, and static temperature) were derived from isentropic-flow relationships, and the viscosity was evaluated by using Sutherland's equation (ref. 15).

Heat Transfer

Vertical-fin data.— Measured and calculated heat-transfer coefficients on both the blunt and the sharp fin are presented in figure 9 for free-stream Mach numbers of 4.2 and 5.3. The data were corrected for conduction losses at the thermocouple locations, as explained in the appendix. At $M_{\infty}=4.2$ (fig. 9(a)), the conduction correction increased the value of the heat-transfer coefficient derived from equation (1) by 5.7 percent to 14.4 percent. At $M_{\infty}=5.3$ (fig. 9(b)), the values were increased 5.9 percent to 10 percent (see table in appendix, page 16). In general, the differences between the data obtained on the left and the right sides of the fin are consistent with the estimated root-mean-square errors of about 7 percent for the data at $M_{\infty}=5.3$ and 11 and 13 percent for the data at $M_{\infty}=4.2$ (see appendix).

Differences between data from the left and the right sides have been noted only at the two most forward locations of the sharp fin where the data from the left side have shown consistently higher heat transfer than the data from the right side. Also, on the blunt fin at x=5 feet, the data from both the right and the left sides have been consistently higher than the general level of the data forward and rearward of this location.

The measured data were faired for comparison with the calculated values obtained from the method of Eckert (ref. 2). This fairing is shown by the solid lines in figure 9. No significant differences, other than the exceptions noted previously, are evident in the comparison of the sharp- and the blunt-fin data for the range of flow lengths and Mach numbers investigated.

As shown in figure 9(a), the method of reference 2 overestimates the average value of the heat-transfer coefficients measured on the blunt fin by 34 percent to 48 percent and on the sharp fin by 38 percent to 42 percent. In figure 9(b) the calculated values are excessive by 41 percent to 57 percent for the blunt fin and by 32 percent to 42 percent for the sharp fin. Hence, whether the comparison is made in a uniform (sharp fin) or nonuniform (blunt fin) flow field, Eckert's method results in an overprediction of the measured heat-transfer coefficients.

Comparison of vertical-fin, wing, and fuselage data.— The trend to lower measured heat transfer than would be predicted by the method of Eckert was also observed in the data from the lower wing and fuselage (refs. 1 and 6). In figure 10, the wing and fuselage data of figures 10(b) and 11 of reference 6 are compared with blunt- and sharp-vertical-fin data in the form of compressible Stanton number (dimensionless heat-transfer coefficient) divided by the incompressible Stanton number as a function of local Mach number. In addition to the data of figure 9, blunt- and sharp-fin data from flights not reported herein are included. The measured compressible Stanton numbers were obtained by using the measured heat-transfer coefficients and calculated local-flow conditions. The flow conditions were calculated by using the attached-shock method for the sharp fin and the detached-shock method (see footnote, page 7) for the blunt fin. The incompressible Stanton numbers were calculated from the equation (ref. 6, appendix B)

$$St_{i} = \frac{0.0296}{(Re_{1})^{1/5} (Pr_{1})^{2/3}}$$
 (2)

which was obtained by using Colburn's modified Reynolds analogy together with Blasius' relation for the flat-plate turbulent skin-friction coefficient.

The solid line in figure 10 represents the calculated Stanton number predicted by Eckert's method with the effect of heating rate neglected (the adiabatic-wall reference-temperature method). The following equation (ref. 6, eq. (B9)) was used in the calculation

$$\frac{\text{St}}{\text{St}_{i}} = \left(\frac{1}{1 + 0.1296 M_{l}^{2}}\right)^{0.65} \tag{3}$$

The comparison shows the measured data to be in fair agreement with calculated results. It is particularly significant that, even in a uniform flow field (sharp fin), the level of the heat-transfer data is about the same as reported in reference 6. Also, the fact that the adiabatic-wall reference-temperature method gives a better estimate of the heat transfer than the method of Eckert is demonstrated generally for all Mach numbers and test locations on the X-15.

CONCLUSIONS

Comparison of measured and calculated turbulent heat-transfer coefficients on the X-15 shows that:

1. The method of Moeckel and Love provided a good approximation to the measured shear-layer profile at free-stream Mach numbers of 4.2 and 5.1 on both the blunt-leading-edge and the sharp-leading-edge vertical fin.

- 2. Turbulent heat-transfer coefficients predicted by Eckert's method, based on measured values of the local-flow conditions on the sharp-leading-edge fin, overestimated the measured heat transfer by 32 percent to 42 percent.
- 3. Turbulent heat-transfer coefficients predicted by Eckert's method, based on measured local-flow conditions on the blunt-leading-edge fin, overestimated the measured heat transfer by 34 percent to 57 percent.
- 4. The levels of turbulent heat transfer measured on the blunt- and the sharp-leading-edge vertical fin compare favorably with previously reported data on the wing and fuselage; the levels were near the values given by Eckert's reference-temperature method when the adiabatic-wall temperature was used in lieu of the actual skin temperature to calculate the reference temperature.

Flight Research Center,

National Aeronautics and Space Administration,
Edwards, Calif., May 28, 1965.

APPENDIX

ERROR ANALYSIS

The probable error in the measured heat-transfer coefficients derived from equation (1) was estimated by using the concept of a limit error. In combination with a Gaussian distribution, the probable error (see ref. 17) is equal to 0.675 times the standard deviation σ and represents the deviation for which the probability of being exceeded is one-half. After the total differential of equation (1) was divided by equation (1), the probable error for each of the significant quantities was combined as an independent error (ref. 18) according to the following equation

$$\left(\frac{\Delta h}{h}\right)^{2} = \left(\frac{A\frac{dT_{w}}{dt}}{Z}\right)^{2} \left(\frac{\Delta b_{w}}{b_{w}}\right)^{2} + \left(\frac{A\frac{dT_{w}}{dt}}{Z}\right)^{2} \left(\frac{\Delta T_{w}}{dt}\right)^{2} + \left[\frac{ZT_{w} + (4)(T_{r} - T_{w})(\sigma \in T_{w}^{4})}{Z(T_{r} - T_{w})}\right]^{2} \left(\frac{\Delta T_{w}}{T_{w}}\right)^{2} + \left(\frac{T_{r}}{T_{r} - T_{w}}\right)^{2} \left(\frac{\Delta T_{w}}{T_{w}}\right)^{2} + \left[\frac{Z(T_{r} - T_{w})}{Z(T_{r} - T_{w})}\right]^{2} \left(\frac{\Delta M_{w}}{Z}\right)^{2} + \left(\frac{C\sigma T_{w}}{Z}\right)^{2} \left(\frac{\Delta C}{C}\right)^{2} \tag{A1}$$

where

$$A = \rho_{W}b_{W}c_{p,W}$$

$$Z = A\frac{dT_{W}}{dt} + \sigma \epsilon T_{W}^{4}$$

$$T_{r} = \left[1 + 0.2(Pr_{l})^{1/3}M_{l}^{2}\right]T_{l} \approx \left[1 + 0.2(Pr_{\infty})^{1/3}M_{\infty}^{2}\right]T_{\infty}$$

To obtain values of the slope of wall temperature $\frac{dT_W}{dt}$ the least-squares method was first used to fit a second-order curve through nine values of the measured wall temperature. This fitted curve was then differentiated at its midpoint to obtain $\frac{dT_W}{dt}$. This slope was used as the average value $\left(\frac{dT_W}{dt}\right)_{av}$

and was also the value used to determine the heat-transfer coefficients in figure 9. The end points of the nine values of wall temperature were then adjusted by ±15° F to account for the overall limit error in the thermocouple system. These adjusted end points, along with the original center point, were used to determine derivatives at the midpoint that would represent

¹ The maximum amount by which the quantity may reasonably be supposed to be in error, sometimes designated as 3σ .

the limit maximum and the limit minimum deviation from the average slope $\left(\frac{dT_W}{dt}\right)_{av}$.

The difference between the limit maximum slope and the average slope was assumed to equal three standard deviations in the Gaussian distribution. The probable error of 0.675 of a standard deviation was then determined and used in equation (A1) along with the other similarly obtained values listed in the following table:

Quantity	Limit error (3σ)	Probable error (0.675σ)
$rac{ ext{dT}_{ ext{W}}}{ ext{dt}}$	±3.75 deg/sec b±0.00042 ft ±15° F	a±0.844 deg/sec ±0.000093 ft ±4° F
T_{∞}		c±4° F
V_{∞}		±50 fps
$ extstyle{M}_{\infty}$		d±0.0517
€		±0.038

^aConstant error for a nine-point curve fit.

Example Calculations

In order to show the magnitude of the statistical root-mean-square error in the heat-transfer coefficient, three example calculations representative of the data from the four flights shown in figure 9 have been made by using equation (A1).

From the following examples, it will be seen that the data with the smallest statistical root-mean-square error are obtained at the higher heating rates. The analysis will show that the heating-rate error, in the second term of equation (Al), outweighs the other possible errors in most instances. The other errors also contribute heavily to the low-heating-rate data (example 3) in such a manner as to yield a large statistical root-mean-square error.

Example 1.— For flights 3-31 and 2-22 with the sharp and the blunt fin, the following conditions were used:

bX-15 manufacturer's drawings.

c Reference 19.

d Estimated.

$$M_{\infty} = 5.3$$

$$x = 2.57 \text{ ft}$$

$$\rho_{w} = 515 \text{ lb/cu ft}$$

$$b_{w} = 0.00308 \text{ ft}$$

$$c_{p,w} = 0.127 \frac{Btu}{lb^{-} °F}$$

$$A = \rho_{w} b_{w} c_{p,w} = (515)(0.00308)(0.127) = 0.2014 \frac{Btu}{f^{+}2^{-} °F}$$

The slope $\frac{dT_w}{dt}$ was obtained as discussed previously at t=90 seconds for flight 2-22 and at t=87 seconds for flight 3-31. The following typical value was used for both flights

$$\frac{dT_{W}}{dt} = 13.7^{\circ} \text{ F per sec at } T_{W} = 1,275^{\circ} \text{ R}$$

Thus

$$Z = \rho_{W}b_{W}c_{p,W} \frac{dT_{W}}{dt} + \sigma \epsilon T_{W}^{4}$$

$$Z = 3.719$$

The recovery temperature, as determined from enthalpy considerations, yields $T_{\rm r}$ = 2,290° R and T_{∞} = 381° R.

Substitution of the values of Z, A, T_w , T_r , and T_∞ along with the values of the probable error from the preceding table into equation (Al) gives

$$\left(\frac{\Delta h}{h}\right)^2 = 5.042 \times 10^{-4} + 20.842 \times 10^{-4} + 0.515 \times 10^{-4} + 5.611 \times 10^{-4} + 13.464 \times 10^{-4} + 1.666 \times 10^{-4}$$

$$\frac{\Delta h}{h} = \pm 0.069 \text{ or } \pm 6.9 \text{ percent}$$

Hence, the probable root-mean-square error in the heat-transfer coefficient for flights 3-31 and 2-22 (fig. 9) was ± 6.9 percent.

Example 2.— For flight 3-23 with the sharp fin, the following conditions were used:

$$M_{\infty} = 4.23$$

 $x = 2.576$ ft
 $\rho_{W} = 515$ lb/cu ft
 $b_{W} = 0.00308$ ft

$$c_{p,w} = 0.122 \frac{Btu}{lb-°F}$$

$$A = \rho_w b_w c_{p,w} = (515)(0.00308)(0.122) = 0.1935 \frac{Btu}{ft^2 - {}^{\circ}F}$$

The slope $\frac{dT_w}{dt}$, as obtained for t = 80 seconds, was

$$\frac{dT_W}{dt} = 8.10^{\circ} \text{ F per sec for } T_W = 1,105^{\circ} \text{ R}$$

Thus

$$Z = \rho_{w}b_{w}c_{p,w} \frac{dT_{w}}{dt} + \sigma \epsilon T_{w}^{4}$$

$$Z = 2.109$$

Using $T_r = 1,582$ °R and $T_\infty = 384$ °R and substituting the values of Z, A, T_W , T_r , and T_∞ along with the values of the probable error from the preceding table into equation (Al) gives

$$\left(\frac{\Delta h}{h}\right)^2 = 5.071 \times 10^{-4} + 59.965 \times 10^{-4} + 1.465 \times 10^{-4} + 11.934 \times 10^{-4} + 36.158 \times 10^{-4} + 1.649 \times 10^{-4}$$

$$\frac{\Delta h}{h} = \pm 0.106 \text{ or } \pm 10.6 \text{ percent}$$

Hence, the probable root-mean-square error in the heat-transfer coefficient for flight 3-23 was ±10.6 percent.

Example 3.— For flight 2-29 with the blunt fin, the following conditions were used:

$$M_{\infty} = 4.2$$

 $x = 2.57$ ft
 $\rho_{w} = 515$ lb/cu ft

$$b_w = 0.00308 \text{ ft}$$

$$c_{p,w} = 0.122 \frac{Btu}{lb-°F}$$

$$A = \rho_W b_W c_{p,W} = (515)(0.00308)(0.122) = 0.1935 \frac{Btu}{ft^2 - {}^{\circ}F}$$

The slope $\frac{dT_W}{dt}$ was obtained for t = 116 seconds, yielding

$$\frac{dT_{W}}{dt} = 4.93^{\circ} \text{ F per sec for } T_{W} = 1,122^{\circ} \text{ R}$$

Thus

$$Z = \rho_{w} b_{w} c_{p,w} \frac{dT_{w}}{dt} + \sigma \epsilon T_{w}^{4}$$

$$Z = 1.530$$

Using $T_r = 1,568$ ° R and $T_\infty = 383$ ° R and substituting the values of Z, A, T_w , T_r , and T_∞ along with the values of the probable error from the preceding table into equation (Al) results in

$$\left(\frac{\Delta h}{h}\right)^2 = 3.572 \times 10^{-4} + 114.001 \times 10^{-4} + 2.055 \times 10^{-4} + 13.482 \times 10^{-4} + 42.799 \times 10^{-4} + 3.541 \times 10^{-4}$$

$$\frac{\Delta h}{h}$$
 = ±0.134 or ±13.4 percent

Conduction Errors

A significant quantity, not included in the preceding error analysis, is the effect of internal conduction. Because of its tendency to be in one direction (to reduce the measured heat-transfer coefficient), this effect was considered separately. Since the vertical fin of the X-15 includes various spars and ribs, the effect of these structural elements as heat sinks was considered in a digital-computer program (thermal analyzer) that solves the transient heat-conduction equation.

By assuming that the thermocouples were placed midway between the rib centerlines, the internal conduction losses were determined for the times at which heat-transfer coefficients are shown in figure 9. The percentage increase in heat-transfer coefficient shown in the following table is the average value for the thermocouples between the indicated positions:

Condition	Thermocouple position, ft	Average increase in h, percent						
M = 4.2								
Blunt fin Flight 2-29 t = 116 sec	1.29 to 1.71 2.14 to 7.78	14.4 7.5						
Sharp fin Flight 3-23 t = 80 sec	1.719 to 2.147 2.576 to 8.212	11.3 5.7						
	M = 5.3							
Blunt fin Flight 2-22 t = 90 sec	1.29 to 1.71 2.14 to 7.78	10.0 6.0						
Sharp fin Flight 3-31 t = 87 sec	1.719 to 2.147 2.576 to 8.212	8.9 5.9						

REFERENCES

- 1. Banner, Richard D.; Kuhl, Albert E.; and Quinn, Robert D.: Preliminary Results of Aerodynamic Heating Studies on the X-15 Airplane. NASA TM X-638, 1962.
- 2. Eckert, Ernst R. G.: Survey on Heat Transfer at High Speeds. WADC Tech. Rep. 54-70 (Contract No. AF 33(616)-2214, RDO No. 474-143), Wright Air Dev. Center, U.S. Air Force, Apr. 1954.
- 3. Watts, Joe D.; and Banas, Ronald P.: X-15 Structural Temperature Measurements and Calculations for Flights to Maximum Mach Numbers of Approximately 4, 5, and 6. NASA TM X-883, 1963.
- 4. van Driest, E. R.: The Problem of Aerodynamic Heating. Aero. Eng. Rev., vol. 15, no. 10, Oct. 1956, pp. 26-41.
- 5. Yakura, James K.: Theory of Entropy Layers and Nose Bluntness in Hypersonic Flow. Vol. 7 of Progress in Astronautics and Rocketry, div. C, F. R. Riddell, ed., Academic Press, Inc., 1962, pp. 422-423.
- 6. Quinn, Robert D.; and Kuhl, Albert E.: Comparison of Flight-Measured and Calculated Turbulent Heat Transfer on the X-15 Airplane at Mach Numbers From 2.5 to 6.0 at Low Angles of Attack. NASA TM X-939, 1964.
- 7. Sachs, G.; and Pray, R. Ford, III, eds.: Air Weapons Materials Application Handbook. Metals and Alloys. First ed., TR 59-66 (ASTIA No. AD 252301), USAF Air Res. and Develop. Command, Dec. 1959.
- 8. Saltzman, Edwin J.: Base Pressure Coefficients Obtained From the X-15 Airplane for Mach Numbers Up to 6. NASA TN D-2420, 1964.
- 9. Pyle, Jon S.: Flight-Measured Wing Surface Pressures and Loads for the X-15 Airplane at Mach Numbers From 1.2 to 6.0. NASA TN D-2602, 1965.
- 10. Shapiro, Ascher H.: The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. I. The Ronald Press Co. (New York), c.1953, p. 153.
- 11. Moeckel, W. E.: Some Effects of Bluntness on Boundary-Layer Transition and Heat Transfer at Supersonic Speeds. NACA Rept. 1312, 1957. (Supersedes NACA TN 3653.)
- 12. Love, Eugene S.: A Reexamination of the Use of Simple Concepts for Predicting the Shape and Location of Detached Shock Waves. NACA TN 4170, 1957.
- 13. Reshotko, Eli; and Tucker, Maurice: Approximate Calculation of the Compressible Turbulent Boundary Layer With Heat Transfer and Arbitrary Pressure Gradient. NACA TN 4154, 1957.

- 14. Persh, Jerome; and Lee, Roland: Tabulation of Compressible Turbulent Boundary Layer Parameters. NAVORD Rept. 4282 (Aeroballistic Res. Rept. 337), U.S. Naval Ordnance Laboratory, White Oak, Md., May 1, 1956.
- 15. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rept. 1135, 1953. (Supersedes NACA TN 1428.)
- 16. Liepmann, H. W.; and Roshko, A.: Elements of Gasdynamics. John Wiley & Sons, Inc., c.1957.
- 17. Yule, G. Undy; and Kendall, M. G.: An Introduction to the Theory of Statistics. (Available from Hafner Pub. Co., New York.) Fourteenth ed., Charles Griffin & Company Limited (London), c.1958.
- 18. Beers, Yardley: Introduction to the Theory of Error. Second ed., Addison-Wesley Pub. Co., Inc., 1962.
- 19. Larson, Terry J.; and Washington, Harold P.: Summary of Rawinsonde Measurements of Temperatures, Pressure Heights, and Winds Above 50,000 Feet Along a Flight-Test Range in the Southwestern United States. NASA TN D-192, 1960.

TABLE I

THERMOCOUPLE SKIN THICKNESS AND FLOW DISTANCE FOR

INSTRUMENTED CHORD OF UPPER VERTICAL FIN

	Blunt 1	leading edge	Sharp	Leading edge
b _₩ , in.	Chord	d = 8.57 ft	Chord	d = 9.00 ft
	x, ft	Percent chord	x, ft	Percent chord
0.037 .037 .037 .030 .030 .030 .030 .030	1.286 1.714 2.140 2.570 3.643 4.329 4.993 5.722 6.408 7.093 7.779	15 20 25 30 42 50 58 66.5 74.5 82.5	1.719 2.147 2.576 3.005 4.076 4.762 5.426 6.205 6.841 7.526 8.212	19 24 29 33 45 53 60 69 76 84 91

TABLE II

ADDITIONAL CHARACTERISTICS OF BLUNT-LEADING-EDGE

UPPER VERTICAL FIN

Airfoil section	ςe
Total area, sq ft	ŀl
Span, ft	38
Mean aerodynamic chord, ft	<i>7</i> 5
Root chord, ft	1
Tip chord, ft	
Taper ratio	74
Aspect ratio	
Sweep at leading edge, deg	30
Sweep at 25-percent-chord line, deg	ŀl
Speed brake total surface area, sq ft	_8

TABLE III MEASURED SKIN TEMPERATURES AND FLIGHT CONDITIONS ON BLUNT-LEADING-EDGE VERTICAL FIN

(Flight 2-29)

			62.2.2	34888884551388855 4484444444888
			4.993	\$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25
			849.8	653 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		Left side	5.570	633 645 660 660 660 661 661 691 713 710 721 721 723 723
		1	2.140	656 666 666 666 666 666 666 666 666 666
F.			_{†τ} ιι	66888667 75888667 7588 75887 75887 75887 75887 75887 75887 75887 75887 75887 75887 7
Temperature,	x, ft		1.286	666 666 666 666 666 666 666 666 666 66
Тещ			61.1.1	655 655 655 655 655 655 655 655 655 655
			7.093	65 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		side	80 [†] .9	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		Right	1.993	688 688 727 727 727 727 727 727 727 727 727 7
			8.643	6.74 6.33 6.33 6.54 6.54 6.54 6.75 6.75 7.17 7.17 7.17 7.17 7.17 7.17 7.17 7
			1.286	656 679 688 688 697 697 725 725 727 727 727 727 727 727 727 72
	တိ	deg		0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
	θ,	deg		o &&&&&&&&3333333333333833
α,				44 mmmmmmmmmmmmmmmma444 minorit mitorinaninooilonit ro
T %				######################################
pω, lb/ft²				
М				++++++++++++++++++++++++++++++++++++++
t,				111 1112 1113 1114 1114 1117 1118 1118 1119 1119 1119 1119 1119
	_	_	_	

Offine at which heat-transfer coefficients were reduced for presentation in figure 9.

TABLE III.- Concluded
MEASURED SKIN TEMPERATURES AND FLIGHT CONDITIONS ON BLUNT-LEADING-EDGE VERTICAL FIN

(Flight 2-22)

			7.779	660 662 662 663 663 663 663 663 663 663 663
			4.993	660 600 600 600 600 600 600 600 600 600
			3.643	\$\$\$\$3\$
		Left side	2.570	25 25 25 25 25 25 25 25 25 25 25 25 25 2
		ľ	2.140	865 865 865 865 865 865 865 865 865 865
٤	£4		1.714	667 667 667 667 777 777 777 777 777 777
Temperature,	x, ft		1.286	653,4 653,4 653,4 7,7 7,7 7,7 7,7 8,7 8,7 8,7 9,2 9,2 9,2 9,2 9,2 9,2 9,2 9,2 9,2 9,2
Tem		Right side	61.17	533 5733 5733 5733 665 667 677 772 772 773 772 773 773 773 774 775 775 775 775 775 775 775 775 775
			7.093	5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54
			80 [†] .9	568 621 621 621 624 626 727 727 729 729 729 729 729 729 729 729
			t.993	666 676 676 777 737 737 737 737 737 737
			3.643	228 570 573 573 573 651 651 651 772 773 773 773 773 773 773 773 773 773
			1.286	65.5 1.108 1.1
	Š,	deg		6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	B, deg			\$\circ
	α, deg			
	T _w ,			288888888888888888888888888888888888888
	P∞, lb/ft²			\$&\$
	;	8 E		**************************************
	ئد	sec		\$

 $^{\mathrm{a}_{\mathrm{T}}\mathrm{lme}}$ at which heat-transfer coefficients were reduced for presentation in figure 9.

TABLE IV MEASURED SKIN IBPERATURES AND FLICHT CONDITIONS ON SHARP-LEADING-EDGE VERTICAL FIN

(Flight 3-23)

		_										
			8.212	4886738888888888888888888888888888888888								
											7.526	823222222222222222222222222222222222222
			6.841	144633328884343434556888843488325888434888358884348848888888888								
		Left side	6.205	38232566732355 382325675255 3823256755755 3823256755755 3823256755755 3823256755755 3823256755755 382325675575 38232567575 38232567575 38232567575 382325675 382325675 382325675 382325675 382325675 382325675 382325675 382325675 382325675 382325675 382325675 382325 3825 38								
			5.426	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
			4.762	88888888888888888888888888888888888888								
			920.4	6913383338888888888888888888888888888888								
			3.005	28 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								
rre, °F	£		2.147	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%								
Temperature,	, x		1.719	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
			8.212	483344888311888334444444448883344888834448888								
				6.205	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
			5.426	\$								
		side	4.762	242288282828282525252525252525252525555555								
		Right	4.076	883833338845843385533555555555555555555								
			2.576	4448833333444433344888585858686844788								
												2.147
			1.719	88333333333333333333333333333333333333								
	Š	deg		6.1. 888889999								
	9	deg		૦ ૦ જાં જાં અં અં જાં જો વર્ષ અં અંત વે વર્ષ વર્ષ અં અને વર્ષ વર્ષ વર્ષ વર્ષ વર્ષ વર્ષ વર્ષ વર્ષ								
	ģ	deg		$\begin{array}{c} H H G G G G G G G G$								
	۾	æ		इंड्रेड्स्ट्रेड्ड्रेड्ड्रेड्ड्रेड्ड्रेड्ड्रेड्ड्रेड्ड्ड्रेड्ड्रेड्ड्ड्ड्								
	Ъ,	$^{\mathrm{1b}/\mathrm{ft}^2}$										
		ξĝ		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
	نب	sec		<u>දිදිපිට විවූවිවිවිය කියන අය </u>								

^aTyme at which heat-transfer coefficients were reduced for presentation in figure 9.

TARLE IV.- Concluded
MEASURED SKIN TEMPERATURES AND FLIGHT CONDITIONS ON SHARP-LEADING-EXCE VERTICAL FIN

(Flight 3-31)

			8.212	5077 5077
			7.526	601 6032 6032 6032 6032 6033 6033 6033 6033
			148 . 9	28 6117 6117 6117 6117 6117 6117 6117 611
			6.205	617 6638 6651 7729 7729 7729 7729 7729 7729 773 885 885 885 885 873 873 873
		Left side	5.426	6.47 6.47 6.47 6.47 6.47 6.47 6.47 6.47
		Ä	4.076	98864 98873 88873 88873 88873 88873 88873 88873 88873
			3.005	\$
ĥ			2.147	65 127 127 127 127 127 127 127 127
Temperature,	x, ft		1.719	193 845 845 845 873 867 969 971 1003 1003 1003 1003 1103 1103 1103 11
Tenī			8.212	6.52 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £
			6.205	657 657 657 777 777 777 777 777 777 777
			924.5	5.59 6.20 6.20 6.20 6.20 6.20 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7
		side	792.4	602 603 603 603 747 747 747 747 747 747 747 747 747 74
		Right side	920.4	666 666 667 777 777 777 777 777 777 777
			2.576	66 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			2*I*2	602 603 603 603 603 603 603 603 603 603 603
			6τL•τ	6666 6666 6676 6676 6676 6776 6776 677
	<u>ئ</u>	deg		0
	9	deg		00000 0 4 ต่ะนับต่ศตนับแน่นต่ศตนับนั
	ġ	deg		o
Fig &			\$2000000000000000000000000000000000000	
	,8°	lb/ft2		\$
	;	Ξ ⁸		\$
t, Bec			-	878848884888488884874

^aThme at which heat-transfer coefficients were reduced for presentation in figure 9.

TABLE V

MEASURED LOCAL STATIC PRESSURES ON SHARP-LEADING-EDGE VERTICAL FIN

Flight 3-23, M = 4.2

Flight 3-31, M = 5.3

		9.300	25.55.55.55.55.55.55.55.55.55.55.55.55.5	
		9	888888888	
1		1.950	1133 1335 1335 1335 1335 1335 1335 1335	
Pressure, $\mathrm{lb/ft}^2$	x, ft	2.970	202 205 210 210 212 212 215 215 207	
Pressure	×	×	2.61	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		066.0	170 177 177 185 185 182 178	
		0-720	188 188 190 198 198 198 198	
	× ×		444444 38884 32833 3293 3293 3393 3393 3393 3393 339	
L.	t, Sec		55888835	

TABLE VI

MEASURED LOCAL STATIC PRESSURES ON BLUNT-LEADING-EDGE VERTICAL FIN

Flight 2-29, M = 4.2

Flight 2-22, M = 5.3

Pressure, lb/ft²

 $^{\mathrm{ff}}$

7.199

5.828

4.456

2.142

1.286

0.514

≥8

t, sec			77 88 89 190		
Pressure, $1b/ft^2$	x, ft	7.199	170 182 168 185 185 168		
		5.828	178 180 175 187 185 192 172		
		95†°†	162 162 165 175 168 168		
		z† 1 •z	210 200 210 210 210 210 198		
		1.286	175 185 175 190 188 185		
		η Τ ΄ Ο	188 195 200 205 208 200 192		
	≥8		4.09 4.14 4.29 4.23 4.23		
	sec.		105 115 115 125 130 135		

2	4

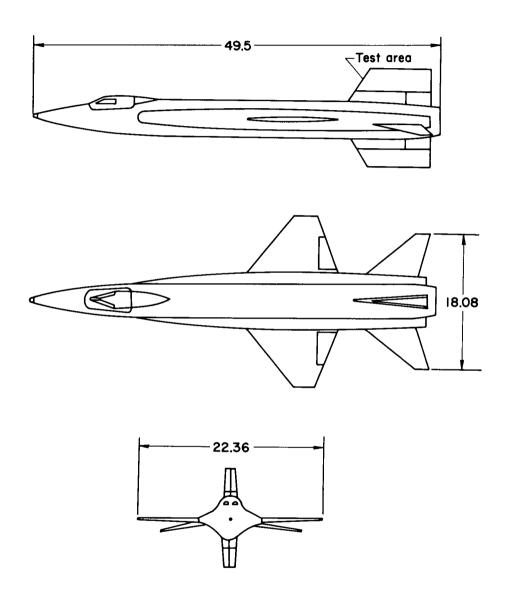


Figure 1.— Three-view drawing of the X-15 research airplane.

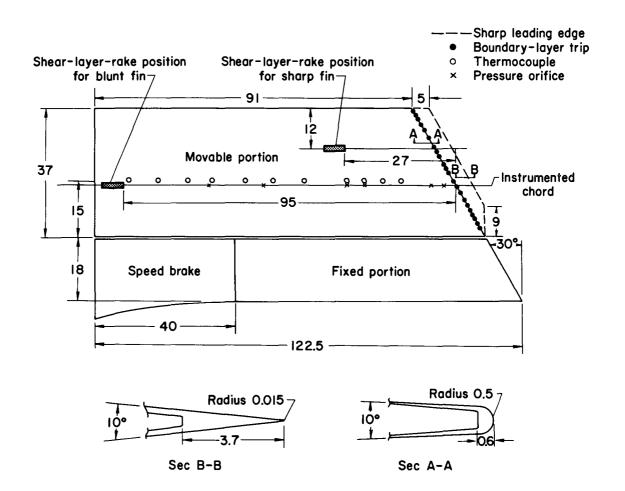
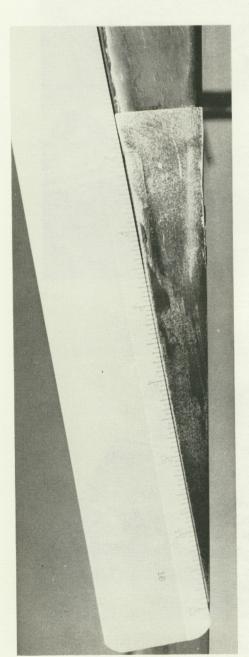



Figure 2.— Sketch of X-15 upper vertical fin showing instrumentation. All dimensions in inches unless noted.

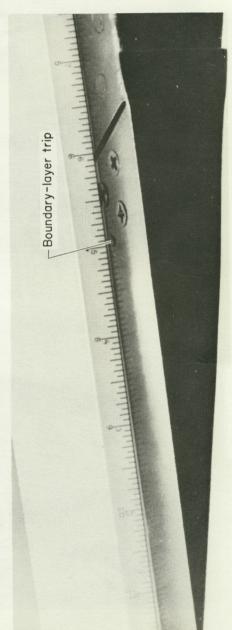
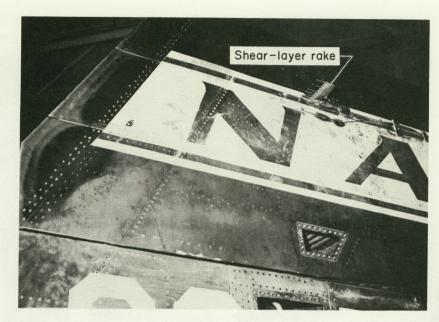



Figure 3.- Edge view of sharp-leading edge and a boundary-layer trip.

(a) Sharp fin.

E-13152

(b) Blunt fin.

E-13153

Figure 4.- Photos of shear-layer rake on sharp- and blunt-leading-edge fins.

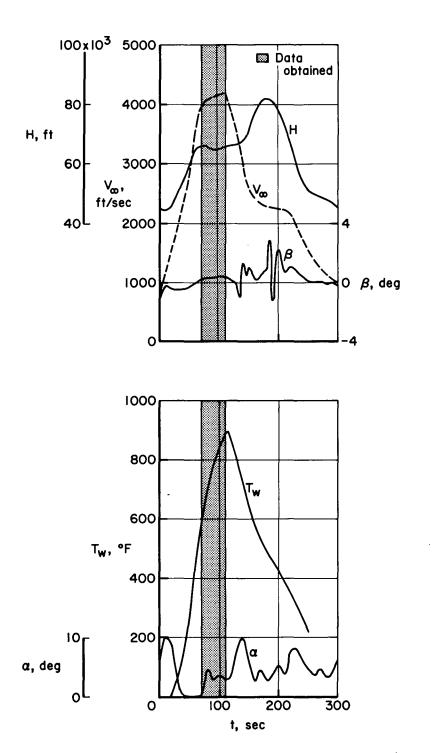


Figure 5.— Time history of typical heating flight (3-23).

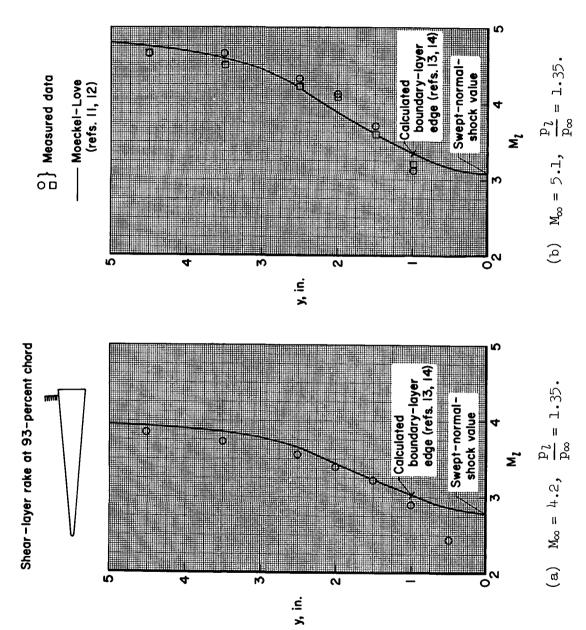


Figure 6.- Measured and calculated shear-layer profiles for the blunt fin.

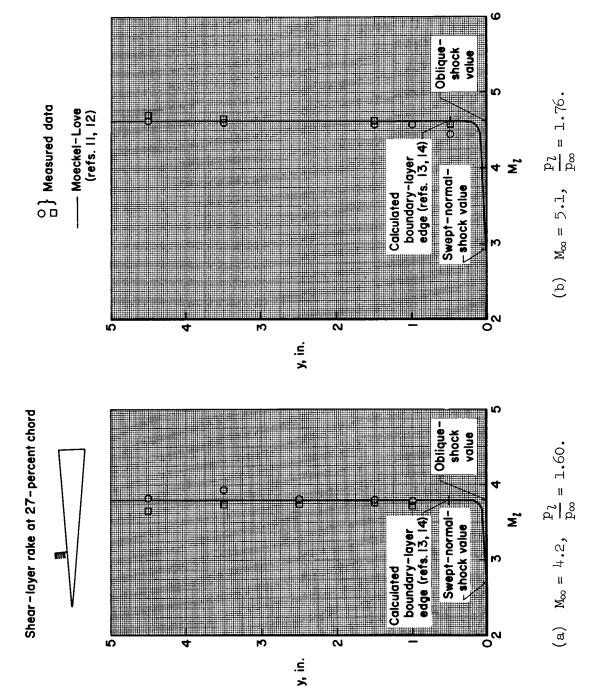


Figure 7.- Measured and calculated shear-layer profiles for the sharp fin.

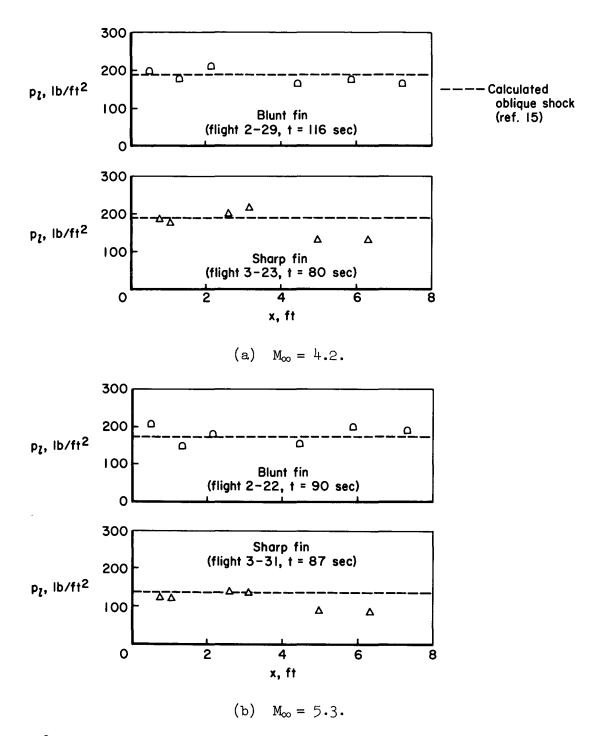


Figure 8.— Comparison of measured and calculated local static pressure on the surface of the sharp and the blunt vertical fin.

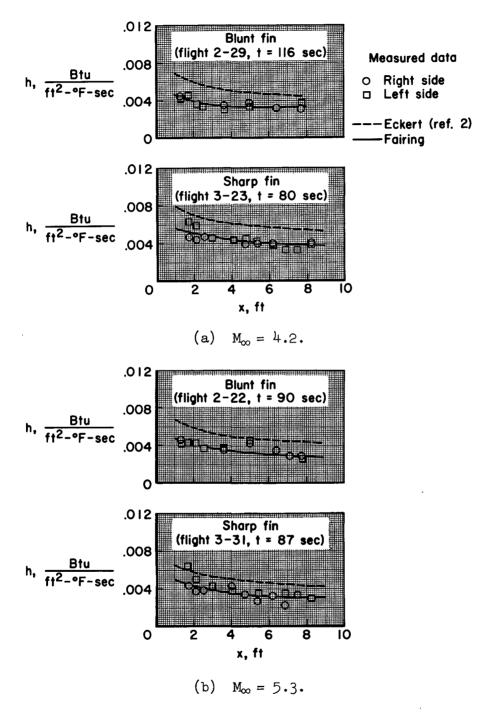


Figure 9.— Comparisons of measured and calculated turbulent heat-transfer coefficients on the sharp and the blunt vertical fin.

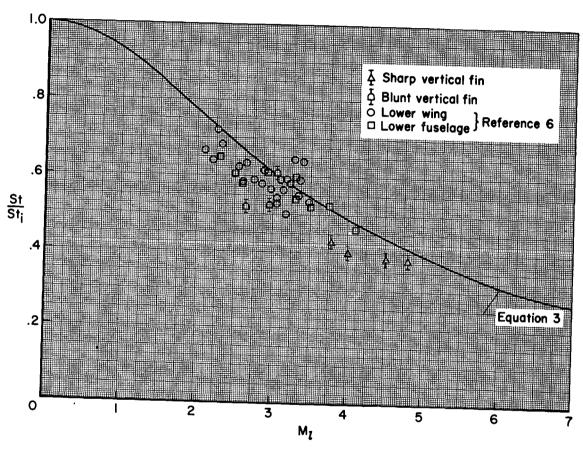


Figure 10.— Comparison of measured and calculated heat-transfer coefficients from various X-15 surfaces.